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Abstract Our overall goal is to develop, implement and transfer accurate new nu-
merical methods for solving moving boundary problems in materials science. We have
three specific objectives:

e Combine semi-Lagrangian time stepping, accurate contouring and fast geomet-
ric algorithms to develop and implement accurate, efficient and general new
methods for moving sharp interfaces.

e Develop a fast modular open source moving interface code for transfer to other
researchers, labs, and industry.

e Build efficient, accurate and general integral solvers for coupled systems of par-
tial differential equations (PDEs) modeling common material phenomena, and
couple these solvers to our modular moving interface code.

We reached a milestone with respect to our first objective—an accurate, efficient
and general moving interface method—with the semi-Lagrangian contouring method
developed in References [16-20]. We are now finalizing portable C/C++ codes for
fast adaptive accurate 2D contouring and general 2D and 3D moving interfaces, to
attain our second objective. A 3D code has been developed, tested on viscoelastic
flow [P0,P1,P2], and delivered for public availability on SourceForge. Our 2D code
and a preliminary spectral solver based on Ewald summation has been implemented
and thoroughly validated on 2D elastic membranes evolving in Stokes incompressible
flow [P3]. Work is ongoing for a high-order linearly-implicit open-source 2D code
for stiff interfaces. A fast and extremely robust elliptic solver with complex inter-
faces, based on a new immersed interface approach and a new Krylov-accelerated
multigrid technique, has been developed, implemented and extensively validated on
elliptic problems with high-contrast variable coefficients and complex interfaces [P4].
Finally, we are developing fast new elliptic PDE solvers, based on Ewald summation
[P5], integral equations and a new geometric nonuniform FFT, to complete our third
objective.
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Moving interfaces Our work on moving interface problems in materials science
combines fast solvers such as boundary integral methods, deferred correction and
Ewald summation with fast geometric algorithms and semi-Lagrangian implicit rep-
resentations to build effective new numerical methods.

We developed an implicit boundary integral method for computing periodic den-
drite formation in the symmetric model of unstable solidification [7] and fast algo-
rithms for evaluating heat potentials [2] which speeded up our method by several
orders of magnitude. In [6], we combined the boundary integral method of [7] with
fast algorithms from [2,3,8] and the level set method of [4]: the level set method han-
dled topological changes effectively while fast boundary integral techniques ensured
accuracy and efficiency in the velocity evaluation. We developed and analyzed efficient
and accurate new vortex methods for modeling convection in the melt [5,13,14,15],
together with new error analyses [15] and quadrature rules [12] for general integral
equations. In the interests of modeling arbitrarily complex material effects in the
bulk, PDE solvers based on Ewald summation and analytic preconditioning were
developed in [9,10,11]. Since then, we have focused on the development and imple-
mentation of highly effective new numerical methods for general moving interface
problems and widely applicable related computations such as elliptic PDE solvers.
We summarize three projects below: fast semi-Lagrangian contouring methods for
general moving interfaces [16-20,P0-P2|, Ewald summed boundary integral methods
for Stokes flow with moving interfaces [P3], fast robust multigrid solvers for elliptic
problems with complex interfaces [P4], and fast locally-corrected spectral methods
for elliptic systems in periodic geometry [P5].

Moving interface problems A moving interface is a collection I'(¢) of noninter-
secting oriented closed curves (in R?) or surfaces (in R®). A sufficiently smooth
moving interface has an outward unit normal vector N, a mean curvature C', and a
normal velocity vector VN. A moving interface problem specifies VN as a functional

of I'(t). Examples include passive transport V' = N - F' where F(z,t) is given, geo-

ou
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where u solves the Laplace equation Au = 0 off I'(¢) and u = C on I'(¢), and models
for crystal growth V' = {g—;], where u solves the heat equation u; = Aw off I'(t) with

the geometric boundary condition u = f(N,C, V) on I'(¢).

metric motion V' = p(f) — ¢(#)C where cosf = N - &, Ostwald ripening V' = {

A linearly-implicit approach Any moving interface problem can be reformulated
as a PDE for a function ¢ whose zero set is I'(¢). The normal, curvature and velocity

are then
Vo 0V

Vel Vel

Given an extension of VN off I'(t) to a globally defined function W, we can regard
the VN formula as a PDE for ¢:

C=-V-N, VN=



We solve this equation on an adaptive quadtree mesh to eliminate the cost of going
up a dimension. Correct viscosity solutions are obtained by semi-Lagrangian time
stepping with exact distancing and large time steps. A general problem-independent
velocity extension makes our method modular and easy to apply.

Semi-Lagrangian methods The semi-Lagrangian “CIR” method [1] solves ¢; —
F(x,t) - Vo = 0 by the following algorithm: at each evaluation point x at the new
time level ¢ + k, move = back with velocity F(x,t,) to s = + kF(x,t,); interpolate
o(x,t,) to the point s; set ¢(x,t,+1) equal to the interpolated value. Our second-
order time stepping scheme couples a CIR predictor with a trapezoidal corrector using
the velocity evaluated from the CIR approximation. It combines the unconditional
stability of CIR with the dramatically reduced dissipation of the trapezoidal rule.
Interpolation error is eliminated by exact distance finding in a dynamic quadtree
data structure. The tree mesh is refined with a functional approach: given a signed
distance function ¢(z, t,), we build a tree at time t,,,1 = ,,+k by recursive evaluation
of p(x,t,11) = ¢(s,t,) at projected points s = x + kF(x, t,).

Our semi-Lagrangian method for moving interfaces [19] combines efficient exact
quadtree-based redistancing, stable second-order semi-Lagrangian time stepping, a
modular problem-independent velocity extension, and exact ¢ interpolation in the
CIR scheme. The velocity extension technique evaluates the nearest-point extension
on a distance tree, builds a continuous interpolant, and satisfies a maximum principle.
Our method resolves and moves complex interfaces at optimal cost with time steps
unconstrained by numerical stability. It is a “black-box” method for moving inter-
faces, which accepts the interface and its velocity at time ¢ and returns the evolved
interface one time step later. Such methods simplify moving interfaces, because the
numerics are independent of the physical problem driving the interfacial motion. Nu-
merical results show that the method converges to correct viscosity solutions even for
difficult moving interface problems involving merging, faceting, transport, nonlocality
and anisotropic curvature-dependent geometry.

A fast semi-Lagrangian contouring method [20] General moving interface
problems are solved in [20] by a new approach: extract the moving interface from
an explicit semi—Lagrangian advection formula with efficient geometric algorithms
and fast accurate contouring techniques. A modular adaptive implementation with
fast new geometry modules computes highly accurate solutions to moving interface
problems involving merging, anisotropy, faceting, curvature, dynamic topology and
nonlocal interactions of PDE type. Exact geometric algorithms are tuned for speed;
velocity evaluation and time stepping are efficiently decoupled from interface reso-
lution; fast new contouring techniques dramatically increase overall accuracy. An
efficient adaptive framework combines the high resolution of front tracking with the
topological robustness of implicit representations.

Accurate contouring The general problem of finding a smooth geometrically con-
strained approximate zero set of a function which can be evaluated at arbitrary points



occurs frequently in computational science and requires a robust general contouring
package. An ideal contouring package would accept function values (and derivatives
if available) at arbitrary points and produce a piecewise-smooth approximation to
the zero set with corners where necessary. Geometric constraints such as bounds on
curvature away from corners are vital in applications such as computer-controlled
machining, and pose a major complication for existing public-domain contouring
software. The PI, with a graduate student, is finalizing new open-source C/C++
packages for constrained piecewise-smooth contouring of scattered data in two and
three dimensions.

Ostwald ripening We are building fast nonlocal velocity evaluation modules for
several standard moving interface problems of materials science. The simplest exam-
ple is Ostwald ripening, which models the growth of larger solid drops by evaporation
from smaller drops with total solid volume conserved. The velocity V' is the normal
derivative {g—}\‘,} of the function w which is harmonic off T'(¢) and equal to the cur-
vature on I'(t). We evaluate this nonlocal velocity by solving the integral equation
of classical potential theory and applying the Dirichlet to Neumann operator. The

solution w is a double layer potential

0K (z,y)
D = [ ——* d
wa) = | IN() p(y)dy
of an unknown density p on I' = T'(t), with K(z,y) = 5= log ||z — y|| the free-space
Green function for the two-dimensional Laplace equation. The density p solves the
integral equation

;“(“’) I wwy)dy =C(z), we€l.

Once p is found, it is convenient to view the harmonic function u as the real part of an
analytic function U. The Cauchy-Riemann equations then yield V' as the tangential
derivative of the imaginary part of U, which is easier to compute than the normal
derivative of the real part u. Discretization of this formulation is highly accurate if
the interface is represented by equidistant points in arclength. Detailed resolution
of the interface requires many points, so fast algorithms such as the fast multipole
method play an important role.

3D viscoelastic flow with interfaces The semi-Lagrangian method has been
implemented in 3D and coupled with a viscoelastic fluid simulator to produce complex
and realistic fluid simulations [P0,P1,P2]. A particularly useful feature of the semi-
Lagrangian approach is the convenience of tracking local features such as textures on
the surface.

Stokes flow with interfaces [P3] Many biological moving interface problems
(blood flow, cell movement, atherosclerosis) involve slow viscous flows satisfying the



incompressible Stokes equations
—vAu+Vp =F, V-u=0.

Elastic interfaces produce singular forces F' = for where dr is a measure on the
interface I'. We have developed a fast solver for such problems by combining semi-
Lagrangian interface evolution with a fast new Ewald summation scheme for the
Stokes equations. The semi-Lagrangian transport of interface densities allows a
straightforward computation of stretching energy, while the new fast summation tech-
nique unifies several well-known local correction techniques for singular integral op-
erators. Our fast summation technique is particularly effective for Stokes problems
with discontinuous data such as elastic membrane problems, where standard methods
encounter great difficulty. Circularizing and oscillating interfaces under Stokes flow
are computed accurately to one part per thousand.

Elliptic solvers with complex interfaces [P4] A new piecewise-polynomial in-
terface method (PIM) for discretizing elliptic problems with complex interfaces be-
tween high-contrast materials is derived, analyzed and tested. A Krylov-accelerated
interface multigrid approach (IMG) solves the discretization efficiently. Stability and
convergence are proved in one dimension, while an extensive array of numerical ex-
periments with complex interfaces and large coefficient transitions demonstrate the
accuracy, efficiency and robustness of the method in two dimensions.

Ewald summation for elliptic systems [P5] Our Stokes solver generalizes to
solve general overdetermined constant-coefficient elliptic systems

Aju; + Agu = f

subject to periodic boundary conditions. Thus every constant-coefficient linear ellip-
tic problem can be solved with a single automatic code, eliminating the necessity for
many specialized codes. Our approach yields high-order accuracy even for solutions
with limited smoothness, and combines with a distributional approach to arbitrary
domains to yield solvers promising arbitrary order accuracy and almost optimal effi-
ciency.
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Personnel Supported This grant has supported one faculty member (the PI) for
the summer months of each academic year, and provided partial support for several
graduate students (Tianbing Chen, Joshua Levenberg [now at Google], Adi Rangan
[now at Courant Institute], and lan Sammis).

Interactions/Transitions The PI presented results from this research in semi-
nars and colloquia at American Institute of Mathematics, Brown University, Courant
Institute, Duke University, Fields Institute for the Mathematical Sciences, Free Uni-
versity of Berlin, Georgia Tech, Hong Kong University of Science and Technology,
INRIA Rocquencourt, Michigan State University, Naval Postgraduate School, North
Carolina State University, Statistical and Applied Mathematics Institute, Stanford
University, Technical University of Berlin, Technical University of Munich, Texas
A&M University, Universite Joseph Fourier Grenoble, University of California at
Berkeley, University of California at Davis, University of California at Santa Cruz,
University of North Carolina at Charlotte, University of Texas at Austin, Univer-
sity of Pennsylvania, 2nd International Meeting on Scientific Computing and Partial
Differential Equations, ICIAM 2007, and STAM 2005 Annual Meeting,

An efficient and accurate 2D contouring code is nearing completion, and will soon
be freely available from the PI's website. Several fast transform codes and a fast 2D
solver for parabolic partial differential systems are already available, and deferred cor-
rection/multigrid /boundary integral codes for two-point and elliptic boundary value
problems are in progress. The 3D surface tracking method described in [P0,P1,P2] has
been implemented as part of the Berkeley Fluid Animation and Simulation Toolkit
(BFAST), which has been open source released and is available on SourceForge.
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